
1

Flow Control

2

TCP Flow Control

receiver: explicitly informs
sender of (dynamically
changing) amount of free
buffer space

– RcvWindow field in
TCP segment

sender: keeps the amount of
transmitted, unACKed data
less than most recently
received RcvWindow

3

sender won’t overrun
receiver’s buffers by

transmitting too much,
 too fast

flow control

receiver buffering

RcvBuffer = size or TCP Receive Buffer

RcvWindow = amount of spare room in Buffer

4

TCP Flow Control: How it Works

• spare room in buffer
= RcvWindow

4

source port # dest port #

application
data

(variable length)

sequence number

acknowledgement number

rcvr window size

ptr urgent data checksum

F S R P A U
head
len

not
used

Options (variable length)

TCP: setting
timeouts

5

TCP Round Trip Time and Timeout

Q: how to set TCP
timeout value?

• longer than RTT

– note: RTT will vary

• too short: premature
timeout

– unnecessary
retransmissions

• too long: slow reaction to
segment loss

Q: how to estimate RTT?
• SampleRTT: measured time from

segment transmission until ACK
receipt

– ignore retransmissions,
cumulatively ACKed segments

• SampleRTT will vary, want
estimated RTT “smoother”

– use several recent measurements,
not just current SampleRTT

6

7

High-level Idea

Set timeout = average + safe margin

8

Estimating Round Trip Time

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

 Exponential weighted moving average

 influence of past sample decreases exponentially fast

 typical value:  = 0.125

 SampleRTT: measured time from
segment transmission until ACK
receipt
 SampleRTT will vary, want a
“smoother” estimated RTT

use several recent
measurements, not
just current SampleRTT

9

Setting Timeout
Problem:

• using the average of SampleRTT will generate
many timeouts due to network variations

Solution:

• EstimtedRTT plus “safety margin”
– large variation in EstimatedRTT -> larger safety margin

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically,  = 0.25)

 Then set timeout interval:

RTT

freq.

10

An Example TCP Session

TCP Round Trip Time and Timeout

Setting the timeout

• EstimtedRTT plus “safety margin”

• large variation in EstimatedRTT -> larger safety margin

11

EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT

 Exponential weighted moving average

 influence of given sample decreases exponentially fast

 typical value of x: 0.1

Timeout = EstimatedRTT + 4*Deviation

Deviation = (1-x)*Deviation +

 x*|SampleRTT-EstimatedRTT|

Fast retransmit

12

13

Fast Retransmit

• Timeout period often
relatively long:
– long delay before resending

lost packet

• Detect lost segments via
duplicate ACKs
– sender often sends many

segments back-to-back

– if segment is lost, there will
likely be many duplicate
ACKs

• If sender receives 3 ACKs
for the same data, it
supposes that segment
after ACKed data was lost:
– resend segment before

timer expires

13

14 14

Triple Duplicate Ack

1 2 3 4 5 6

2 3 4

Packets

Acknowledgements (waiting seq#)

4 4

7

4

15

Fast Retransmit:

15

 event: ACK received, with ACK field value of y

 if (y > SendBase) {

 …

 SendBase = y

 if (there are currently not-yet-acknowledged segments)

 start timer

 …

 }

 else {

 increment count of dup ACKs received for y

 if (count of dup ACKs received for y = 3) {

 resend segment with sequence number y

 …

a duplicate ACK for
already ACKed segment fast retransmit

Congestion Control

16

Principles of Congestion Control

Congestion:

• informally: “too many sources sending too much data too
fast for network to handle”

• manifestations:

– lost packets (buffer overflow at routers)

– long delays (queuing in router buffers)

• a highly important problem!

17

Causes/costs of congestion: scenario 1

• two senders, two receivers

• one router,

• infinite buffers

• no retransmission

18

Causes/costs of congestion: scenario 1

• Throughput increases with load

• Maximum total load C (Each session C/2)

• Large delays when congested
– The load is stochastic

19

Causes/costs of congestion: scenario 2

• one router, finite buffers

• sender retransmission of lost packet

20

Causes/costs of congestion: scenario 2
• always: (goodput)

– Like to maximize goodput!

• “perfect” retransmission:

– retransmit only when loss:

• Actual retransmission of delayed (not lost) packet

• makes larger (than perfect case) for same

21

l
in

l
out

=

l
out

l
in

l
out

>

l
in

Causes/costs of congestion: scenario 2

22

“costs” of congestion:

 more work (retrans) for given “goodput”

 unneeded retransmissions: link carries (and delivers)
multiple copies of pkt

inin ll '

l
o

u
t

l
o

u
t

l’in

l
o

u
t

l’in

Causes/costs of congestion: scenario 3
• four senders

• multihop paths

• timeout/retransmit

23

l
in

Q: what happens as
and increase ? l

in

Causes/costs of congestion: scenario 3

24

Another “cost” of congestion:

 when packet dropped, any “upstream” transmission
capacity used for that packet was wasted!

Approaches towards congestion control

End-end congestion control:
• no explicit feedback from

network

• congestion inferred from end-
system observed loss, delay

• approach taken by TCP

Network-assisted congestion
control:

• routers provide feedback to
end systems

– single bit indicating
congestion (SNA, DECbit,
TCP/IP ECN, ATM)

– explicit rate sender should
send at

25

Two broad approaches towards congestion control:

Goals of congestion control

• Throughput:

– Maximize goodput

– the total number of bits end-end

• Fairness:

– Give different sessions “equal” share.

– Max-min fairness

• Maximize the minimum rate session.

– Single link:

• Capacity R

• sessions m

• Each sessions: R/m
26

Max-min fairness

• Model: Graph G(V,e) and sessions s1 … sm

• For each session si a rate ri is selected.

• The rates are a Max-Min fair allocation:

– The allocation is maximal

• No ri can be simply increased

– Increasing allocation ri requires reducing

• Some session j

• rj ≤ ri

• Maximize minimum rate session.

27

Max-min fairness: Algorithm

• Model: Graph G(V,e) and sessions s1 … sm

• Algorithmic view:

– For each link compute its fair share f(e).

• Capacity / # session

– select minimal fair share link.

– Each session passing on it, allocate f(e).

– Subtract the capacities and delete sessions

– continue recessively.

• Fluid view.
28

Max-min fairness

• Example

• Throughput versus fairness.

29

Case study: ATM ABR congestion control

ABR: available bit rate:

• “elastic service”

• if sender’s path “underloaded”:

– sender can use available bandwidth

• if sender’s path congested:

– sender lowers rate

– a minimum guaranteed rate

• Aim:

– coordinate increase/decrease rate

– avoid loss!

30

Case study: ATM ABR congestion control

RM (resource management) cells:

• sent by sender, in between data cells
– one out of every 32 cells.

• RM cells returned to sender by receiver

• Each router modifies the RM cell

• Info in RM cell set by switches

– “network-assisted”

• 2 bit info.

– NI bit: no increase in rate (mild congestion)

– CI bit: congestion indication (lower rate)

31

Case study: ATM ABR congestion control

• two-byte ER (explicit rate) field in RM cell
– congested switch may lower ER value in cell

– sender’ send rate thus minimum supportable rate on path

• EFCI bit in data cells: set to 1 in congested switch
– if data cell preceding RM cell has EFCI set, sender sets CI bit in

returned RM cell

32

Case study: ATM ABR congestion control

• How does the router selects its action:

– selects a rate

– Set congestion bits

– Vendor dependent functionality

• Advantages:

– fast response

– accurate response

• Disadvantages:

– network level design

– Increase router tasks (load).

– Interoperability issues.

33

End to end
control

34

End to end feedback

• Abstraction:

– Alarm flag.

– observable at the end stations

35

Simple Abstraction

36

Simple Abstraction

37

Simple feedback model

• Every RTT receive feedback

– High Congestion

Decrease rate

– Low congestion

Increase rate

• Variable rate controls the sending rate.

 38

Multiplicative Update

• Congestion:

– Rate = Rate/2

• No Congestion:

– Rate= Rate *2

• Performance

– Fast response

– Un-fair:

Ratios unchanged

39

Additive Update

• Congestion:

– Rate = Rate -1

• No Congestion:

– Rate= Rate +1

• Performance

– Slow response

• Fairness:

– Divides spare BW equally

– Difference remains unchanged
40

AIMD Scheme

• Additive Increase

– Fairness: ratios improves

• Multiplicative Decrease

– Fairness: ratio unchanged

– Fast response

• Performance:

– Congestion -

Fast response

– Fairness 41

overflow

AIMD: Two users, One link

42

BW limit

Fairness

Rate of User 1

R
a
te

 o
f

 U
se

r
2

43 43

TCP Congestion Control
 Closed-loop, end-to-end, window-based congestion

control

 Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

 Works well so far: the bandwidth of the Internet
has increased by more than 200,000 times

Many versions
 TCP/Tahoe: this is a less optimized version

 TCP/Reno: many OSs today implement Reno type
congestion control

 TCP/Vegas: not currently used

For more details: see TCP/IP illustrated; or read

http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation

44

TCP/Reno Congestion Detection

• 3 dup ACKs indicates
network capable of
delivering some segments

• timeout is “more
alarming”

Philosophy:

Detect congestion
in two cases and
react differently:

 3 dup ACKs

 timeout event

45

Basic Structure

Two “phases”
slow-start: MI

congestion avoidance: AIMD

 Important variables:
cwnd: congestion window size

ssthresh: threshold between the slow-
start phase and the congestion avoidance
phase

46

Visualization of the Two Phases

47

Slow Start: MI

What is the goal?
 getting to equilibrium gradually but quickly

 Implements the MI algorithm
 double cwnd every RTT until network congested
 get a rough estimate of the optimal of cwnd

48

Slow-start

cwnd = 1

cwnd = 2

cwnd = 4

cwnd = 6

Initially:
 cwnd = 1;
 ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
 if (cwnd < ssthresh)
 /* slow start*/
 cwnd = cwnd + 1;

cwnd = 8

49

Startup Behavior with Slow-start

See [Jac89]

50

TCP/Reno Congestion Avoidance

• Maintains equilibrium and reacts around
equilibrium

• Implements the AIMD algorithm

– increases window by 1 per round-trip time
(how?)

– cuts window size

• to half when detecting congestion by 3DUP

• to 1 if timeout

• if already timeout, doubles timeout
50

51 51

TCP/Reno Congestion Avoidance

Initially:
 cwnd = 1;
 ssthresh = infinite (e.g., 64K);
For each newly ACKed segment:
 if (cwnd < ssthresh)
 /* slow start*/
 cwnd = cwnd + 1;
 else
 /* congestion avoidance; cwnd increases (approx.)

 by 1 per RTT */
 cwnd += 1/cwnd;

Triple-duplicate ACKs:
 /* multiplicative decrease */
 cwnd = ssthresh = cwnd/2;
Timeout:
 ssthresh = cwnd/2;
 cwnd = 1;
(if already timed out, double timeout value; this is called exponential backoff)

52 52

TCP/Reno: Big Picture

Time

cwnd

slow

start

congestion

avoidance

TD

TD: Triple duplicate acknowledgements

TO: Timeout

TO
ssthresh

ssthresh ssthresh
ssthresh

congestion

avoidance

TD

congestion

avoidance
slow

start

congestion

avoidance

TD

53

A Session

53 Question: when cwnd is cut to half, why sending rate is not?

54
54

TCP/Reno Queueing Dynamics

 Consider congestion avoidance only

Time

cwnd

congestion

avoidance

TD

ssthresh

bottleneck

bandwidth

filling buffer

draining buffer

There is a filling and draining of buffer process
for each TCP flow.

TCP Tahoe Congestion Avoidance

59

/* slowstart is over */

/* Congwin > threshold */

Until (timeout) { /* loss event */

 every ACK:

 Congwin += 1/Congwin

 }

threshold = Congwin/2

Congwin = 1

perform slowstart

Congestion avoidance

TCP Taheo

TCP Reno
• Fast retransmit:

– After receiving 3 duplicate ACK

– Resend first packet in window.
• Try to avoid waiting for timeout

• Fast recovery:
– After retransmission do not enter slowstart.

– Threshold = Congwin/2

– Congwin = 3 + Congwin/2

– Each duplicate ACK received Congwin++

– After new ACK
• Congwin = Threshold

• return to congestion avoidance

• Single packet drop: great!

60

TCP Congestion Window Trace

61

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

C
o

n
g

e
s
ti

o
n

 W
in

d
o

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission

TCP Vegas:

• Idea: track the RTT

– Try to avoid packet loss

– latency increases: lower rate

– latency very low: increase rate

• Implementation:

– sample_RTT: current RTT

– Base_RTT: min. over sample_RTT

– Expected = Congwin / Base_RTT

– Actual = number of packets sent / sample_RTT

–  =Expected - Actual

62

TCP Vegas

•  = Expected - Actual

• Congestion Avoidance:

– two parameters:  and , <

– If ( < ) Congwin = Congwin +1

– If ( > ) Congwin = Congwin -1

– Otherwise no change

– Note: Once per RTT

• Slowstart

– parameter 

– If ( > ) then move to congestion avoidance

• Timeout: same as TCP Taheo

63

TCP Dynamics: Rate

• TCP Reno with NO Fast Retransmit or Recovery

• Sending rate: Congwin*MSS / RTT

• Assume fixed RTT

64

W

W/2

Actual Sending rate:
 between W*MSS / RTT and (1/2) W*MSS / RTT

 Average (3/4) W*MSS / RTT

TCP Dynamics: Loss

• Loss rate (TCP Reno)

– No Fast Retransmit or Recovery

• Consider a cycle

65

 Total packet sent:
 about (3/8) W2 MSS/RTT = O(W2)

One packet loss

 Loss Probability: p=O(1/W2) or W=O(1/p)

W

W/2

TCP latency modeling

Q: How long does it take to
receive an object from a Web
server after sending a
request?

• TCP connection establishment

• data transfer delay

Notation, assumptions:

• Assume one link between
client and server of rate R

• Assume: fixed congestion
window, W segments

• S: MSS (bits)

• O: object size (bits)

• no retransmissions
– no loss, no corruption

66

TCP latency modeling

67

Optimal Setting: Time = O/R

Two cases to consider:
 WS/R > RTT + S/R:

 ACK for first segment in window returns
before window’s worth of data sent

 WS/R < RTT + S/R:
 wait for ACK after sending window’s worth of

data sent

TCP latency Modeling

68

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R
+ (K-1)[S/R + RTT - WS/R]

K:= O/WS

TCP Latency Modeling: Slow Start

• Now suppose window grows according to slow start.

• Will show that the latency of one object of size O is:

69

R

S

R

S
RTTP

R

O
RTTLatency P)12(2 










where P is the number of times TCP stalls at server:

}1,{min  KQP

- where Q is the number of times the server would stall
 if the object were of infinite size.

- and K is the number of windows that cover the object.

TCP Latency Modeling: Slow Start (cont.)

70

RTT

initiate TCP

connection

request

object
first window

= S/R

second window

= 2S/R

third window

= 4S/R

fourth window

= 8S/R

complete

transmissionobject

delivered

time at

client

time at

server

Example:

O/S = 15 segments

K = 4 windows

Q = 2

P = min{K-1,Q} = 2

Server stalls P=2 times.

TCP Latency Modeling: Slow Start (cont.)

71

R

S

R

S
RTTPRTT

R

O

R

S
RTT

R

S
RTT

R

O

stallTimeRTT
R

O

P

k
P

k

P

p

p

)12(][2

]2[2

2latency

1

1

1

















 window after the timestall 2 th1 k
R

S
RTT

R

S k 













ementacknowledg receivesserver until

segment send tostartsserver whenfrom time RTT
R

S

 window k the transmit totime2 th1 

R

Sk

RTT

initiate TCP

connection

request

object
first window

= S/R

second window

= 2S/R

third window

= 4S/R

fourth window

= 8S/R

complete

transmissionobject

delivered

time at

client

time at

server

