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Flow Control 
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TCP Flow Control 

receiver: explicitly informs 
sender of (dynamically 
changing) amount of free 
buffer space  

– RcvWindow field in 
TCP segment 

sender: keeps the amount of 
transmitted, unACKed data 
less than most recently 
received RcvWindow 
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sender won’t overrun 
receiver’s buffers by 

transmitting too much, 
 too fast 

flow control 

receiver buffering 

RcvBuffer = size or TCP Receive Buffer 
 
RcvWindow = amount of spare room in Buffer  
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TCP Flow Control: How it Works 

• spare room in buffer 
= RcvWindow 
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TCP: setting 
timeouts 
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TCP Round Trip Time and Timeout 

Q: how to set TCP 
timeout value? 

• longer than RTT 

– note: RTT will vary 

• too short: premature 
timeout 

– unnecessary 
retransmissions 

• too long: slow reaction to 
segment loss 

Q: how to estimate RTT? 
• SampleRTT: measured time from 

segment transmission until ACK 
receipt 

– ignore retransmissions, 
cumulatively ACKed segments 

• SampleRTT will vary, want 
estimated RTT “smoother” 

– use several recent measurements, 
not just current SampleRTT 
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High-level Idea 

Set timeout = average + safe margin 
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Estimating Round Trip Time 

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr
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EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT 

 Exponential weighted moving average 

 influence of past sample decreases exponentially fast 

 typical value:  = 0.125 

 SampleRTT: measured time from  
segment transmission until ACK  
receipt 
 SampleRTT will vary, want a  
“smoother” estimated RTT 

use several recent  
measurements, not  
just current SampleRTT 
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Setting Timeout 
Problem: 

• using the average of SampleRTT will generate  
many timeouts due to network variations 
 

Solution: 

• EstimtedRTT plus “safety margin” 
– large variation in EstimatedRTT -> larger safety margin 

TimeoutInterval = EstimatedRTT + 4*DevRTT 

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT| 

 

(typically,  = 0.25) 

 Then set timeout interval: 

RTT 

freq. 
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An Example TCP Session 



TCP Round Trip Time and Timeout 

Setting the timeout 

• EstimtedRTT plus “safety margin” 

• large variation in EstimatedRTT -> larger safety margin 
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EstimatedRTT = (1-x)*EstimatedRTT + x*SampleRTT 

 Exponential weighted moving average 

 influence of given sample decreases exponentially fast 

 typical value of x: 0.1 

Timeout = EstimatedRTT + 4*Deviation 

Deviation = (1-x)*Deviation + 

             x*|SampleRTT-EstimatedRTT| 



Fast retransmit 
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Fast Retransmit 

• Timeout period  often 
relatively long: 
– long delay before resending 

lost packet 

 

• Detect lost segments via 
duplicate ACKs 
– sender often sends many 

segments back-to-back 

– if segment is lost, there will 
likely be many duplicate 
ACKs 

• If sender receives 3 ACKs 
for the same data, it 
supposes that segment 
after ACKed data was lost: 
– resend segment before 

timer expires 
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Triple Duplicate Ack 

1 2 3 4 5 6 

2 3 4 

Packets 

Acknowledgements (waiting seq#) 

4 4 

7 

4 
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Fast Retransmit: 
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 event: ACK received, with ACK field value of y  

                 if (y > SendBase) { 

                       …  

                       SendBase = y 

                       if (there are currently not-yet-acknowledged segments) 

                             start timer  

                       … 

                     }  

                 else {  

                         increment count of dup ACKs received for y 

                         if (count of dup ACKs received for y = 3) { 

                               resend segment with sequence number y 

                          …          

a duplicate ACK for  
already ACKed segment fast retransmit 



Congestion Control 
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Principles of Congestion Control 

Congestion: 

• informally: “too many sources sending too much data too 
fast for network to handle” 

• manifestations: 

– lost packets (buffer overflow at routers) 

– long delays (queuing in router buffers) 

• a highly important problem! 
 

17 



Causes/costs of congestion: scenario 1  

• two senders, two receivers 

• one router,  

• infinite buffers  

• no retransmission 
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Causes/costs of congestion: scenario 1  

• Throughput increases with load 

• Maximum total load C (Each session C/2) 

• Large delays when congested 
– The load is stochastic 
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Causes/costs of congestion: scenario 2  

• one router, finite buffers  

• sender retransmission of lost packet 
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Causes/costs of congestion: scenario 2  
• always:                   (goodput) 

– Like to maximize goodput! 

• “perfect” retransmission: 

– retransmit only when loss:  

• Actual retransmission of delayed (not lost) packet 

•  makes         larger (than perfect case) for same 
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Causes/costs of congestion: scenario 2  
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“costs” of congestion:  

 more work (retrans) for given “goodput” 

 unneeded retransmissions: link carries (and delivers) 
multiple copies of pkt 
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Causes/costs of congestion: scenario 3  
• four senders 

• multihop paths 

• timeout/retransmit 
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Causes/costs of congestion: scenario 3  
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Another “cost” of congestion:  

 when packet dropped, any “upstream” transmission 
capacity used for that packet was wasted! 



Approaches towards congestion control 

End-end congestion control: 
• no explicit feedback from 

network 

• congestion inferred from end-
system observed loss, delay 

• approach taken by TCP 

Network-assisted congestion 
control: 

• routers provide feedback to 
end systems 

– single bit indicating 
congestion (SNA, DECbit, 
TCP/IP ECN, ATM) 

– explicit rate sender should 
send at 
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Two broad approaches towards congestion control: 



Goals of congestion control 

• Throughput: 

– Maximize goodput 

– the total number of bits end-end 

• Fairness: 

– Give different sessions “equal” share. 

– Max-min fairness 

• Maximize the minimum rate session. 

– Single link: 

• Capacity R 

• sessions m 

• Each sessions: R/m 
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Max-min fairness 

• Model: Graph G(V,e) and sessions s1 … sm 

• For each session si a rate ri is selected. 

• The rates are a Max-Min fair allocation: 

– The allocation is maximal 

• No ri can be simply increased 

– Increasing allocation ri requires reducing 

• Some session j 

• rj ≤ ri 

• Maximize minimum rate session. 
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Max-min fairness: Algorithm 

• Model: Graph G(V,e) and sessions s1 … sm 

• Algorithmic view: 

– For each link compute its fair share f(e). 

• Capacity / # session 

– select minimal fair share link. 

– Each session passing on it, allocate f(e). 

– Subtract the capacities and delete sessions 

– continue recessively. 

• Fluid view. 
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Max-min fairness 

• Example 

 

 

 

 

• Throughput versus fairness. 
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Case study: ATM ABR congestion control 

ABR: available bit rate: 

• “elastic service”  

• if sender’s path “underloaded”:  

– sender can use available bandwidth 

• if sender’s path congested:  

– sender lowers rate 

– a minimum guaranteed rate 

• Aim:  

– coordinate increase/decrease rate 

– avoid loss! 
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Case study: ATM ABR congestion control 

RM (resource management) cells: 

• sent by sender, in between data cells 
– one out of every 32 cells. 

• RM cells returned to sender by receiver 

• Each router modifies the RM cell 

• Info in RM cell set by switches 

– “network-assisted”  

• 2 bit info. 

– NI bit: no increase in rate (mild congestion) 

– CI bit: congestion indication (lower rate) 
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Case study: ATM ABR congestion control 

• two-byte ER (explicit rate) field in RM cell 
– congested switch may lower ER value in cell 

– sender’ send rate thus minimum supportable rate on path 

• EFCI bit in data cells: set to 1 in congested switch 
– if data cell preceding RM cell has EFCI set, sender sets CI bit in 

returned RM cell 
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Case study: ATM ABR congestion control 

• How does the router selects its action: 

–  selects a rate 

– Set congestion bits 

– Vendor dependent functionality 

• Advantages: 

– fast response 

– accurate response 

• Disadvantages: 

– network level design 

– Increase router tasks (load). 

– Interoperability issues. 
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End to end 
control 
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End to end feedback 

• Abstraction: 

– Alarm flag.  

– observable at the end stations 
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Simple Abstraction 
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Simple Abstraction 
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Simple feedback model 

• Every RTT receive feedback 

– High Congestion 

Decrease rate 

 

– Low congestion 

Increase rate 

 

 

• Variable rate controls the sending rate. 
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Multiplicative Update 

• Congestion: 

– Rate = Rate/2 

• No Congestion: 

– Rate= Rate *2 

• Performance  

– Fast response 

– Un-fair: 

Ratios unchanged 
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Additive Update 

• Congestion: 

– Rate = Rate -1 

• No Congestion: 

– Rate= Rate +1 

• Performance  

– Slow response 

• Fairness:  

– Divides spare BW equally 

– Difference remains unchanged 
40 



AIMD Scheme 

• Additive Increase 

– Fairness: ratios improves 

• Multiplicative Decrease 

– Fairness: ratio unchanged 

– Fast response 

• Performance: 

– Congestion - 

Fast response 

– Fairness 41 

overflow 



AIMD: Two users, One link 
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TCP Congestion Control 
 Closed-loop, end-to-end,  window-based  congestion 

control 

 Designed by Van Jacobson in late 1980s, based on 
the AIMD alg. of Dah-Ming Chu and Raj Jain 

 Works well so far: the bandwidth of the Internet 
has increased by more than 200,000 times 

Many versions 
 TCP/Tahoe: this is a less optimized version 

 TCP/Reno: many OSs today  implement Reno type 
congestion control 

 TCP/Vegas: not currently used 

For more details: see TCP/IP illustrated; or read 

http://lxr.linux.no/source/net/ipv4/tcp_input.c for linux implementation 
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TCP/Reno Congestion Detection 

 

• 3 dup ACKs indicates  
network capable of  
delivering some segments 
 

• timeout is “more 
alarming” 
 

Philosophy: 

Detect congestion 
in two cases and 
react differently: 

 
 3 dup ACKs 

 timeout event 
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Basic Structure 

Two “phases” 
slow-start: MI 

congestion avoidance: AIMD 

 

 Important variables: 
cwnd: congestion window size 

ssthresh: threshold between the slow-
start phase and the congestion avoidance 
phase 
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Visualization of the Two Phases 
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Slow Start: MI 

What is the goal?   
 getting to equilibrium gradually but quickly 

 

 Implements the MI algorithm 
 double cwnd  every RTT until network congested 
 get a rough estimate of the optimal of cwnd 
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Slow-start 

cwnd = 1 

cwnd = 2 

cwnd = 4 

cwnd = 6 

Initially: 
 cwnd = 1; 
 ssthresh = infinite (e.g., 64K); 
 
For each newly ACKed segment: 
 if (cwnd < ssthresh)  
     /* slow start*/ 
     cwnd = cwnd + 1; 

cwnd = 8 
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Startup Behavior with Slow-start 

See [Jac89] 
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TCP/Reno Congestion Avoidance 

• Maintains equilibrium and reacts around 
equilibrium 

 

• Implements the AIMD algorithm 

– increases window by 1 per round-trip time 
(how?) 

– cuts window size  

• to half when detecting congestion by 3DUP 

• to 1 if timeout 

• if already timeout, doubles timeout 
50 
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TCP/Reno Congestion Avoidance 

Initially: 
 cwnd = 1; 
 ssthresh = infinite (e.g., 64K); 
For each newly ACKed segment: 
 if (cwnd < ssthresh)  
     /* slow start*/ 
     cwnd = cwnd + 1; 
 else 
     /* congestion avoidance; cwnd increases (approx.)  

        by 1 per RTT */ 
    cwnd += 1/cwnd; 

Triple-duplicate ACKs: 
     /* multiplicative decrease */ 
 cwnd = ssthresh = cwnd/2; 
Timeout: 
 ssthresh = cwnd/2; 
 cwnd = 1; 
(if already timed out, double timeout value; this is called exponential backoff) 
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TCP/Reno: Big Picture  

Time 

cwnd 
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A Session 

53 Question: when cwnd is cut to half, why sending rate is not? 
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TCP/Reno Queueing Dynamics 

 Consider congestion avoidance only 

Time 

cwnd 

congestion 

avoidance 

TD 

ssthresh 

bottleneck 

bandwidth 

filling buffer 

draining buffer 

There is a filling and draining of buffer process  
for each TCP flow. 



TCP Tahoe Congestion Avoidance 
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/* slowstart is over        */  

/* Congwin > threshold */ 

Until (timeout) { /* loss event */ 

  every ACK: 

      Congwin += 1/Congwin 

  } 

threshold = Congwin/2 

Congwin = 1 

perform slowstart 

Congestion avoidance 

TCP Taheo 



TCP Reno 
• Fast retransmit: 

– After receiving 3 duplicate ACK 

– Resend first packet in window. 
• Try to avoid waiting for timeout 

• Fast recovery: 
– After retransmission do not enter slowstart. 

– Threshold = Congwin/2 

– Congwin = 3 + Congwin/2 

– Each duplicate ACK received Congwin++ 

– After new ACK 
•  Congwin = Threshold  

• return to congestion avoidance 

• Single packet drop: great! 
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TCP Congestion Window Trace 

61 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Time

C
o

n
g

e
s
ti

o
n

 W
in

d
o

w

threshold

congestion
windowtimeouts

slow start period

additive increase

fast retransmission



TCP Vegas: 

• Idea: track the RTT 

– Try to avoid packet loss 

– latency increases: lower rate 

– latency very low: increase rate 

• Implementation: 

– sample_RTT: current RTT 

– Base_RTT: min. over sample_RTT 

– Expected = Congwin / Base_RTT 

– Actual   = number of packets sent / sample_RTT 

–  =Expected - Actual 
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TCP Vegas 

•  = Expected - Actual 

• Congestion Avoidance: 

– two parameters:  and , < 

– If ( < ) Congwin = Congwin  +1 

– If ( > ) Congwin = Congwin -1 

– Otherwise no change 

– Note: Once per RTT 

• Slowstart 

– parameter  

– If ( > ) then move to congestion avoidance 

• Timeout: same as TCP Taheo 
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TCP Dynamics: Rate 

• TCP Reno with NO Fast Retransmit or Recovery 

• Sending rate:  Congwin*MSS / RTT 

• Assume fixed RTT  
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W 

W/2 

Actual Sending rate:   
 between W*MSS / RTT and (1/2) W*MSS / RTT  

 Average (3/4) W*MSS / RTT  



TCP Dynamics: Loss 

• Loss rate (TCP Reno) 

– No Fast Retransmit or Recovery 

• Consider a cycle 
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 Total packet sent: 
  about (3/8) W2 MSS/RTT  = O(W2) 

One packet loss 

 Loss Probability: p=O(1/W2) or W=O(1/p) 

W 

W/2 



TCP latency modeling 

Q: How long does it take to 
receive an object from a Web 
server after sending a 
request?  

• TCP connection establishment 

• data transfer delay 

 

Notation, assumptions: 

• Assume one link between 
client and server of rate R 

• Assume: fixed congestion 
window, W segments 

• S: MSS (bits) 

• O: object size (bits) 

• no retransmissions 
– no loss, no corruption 
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TCP latency modeling 
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Optimal Setting: Time = O/R 

 

Two cases to consider: 
 WS/R > RTT + S/R:  

 ACK for first segment in window returns 
before window’s worth of data sent 

 WS/R < RTT + S/R:  
 wait for ACK after sending window’s worth of 

data sent 



TCP latency Modeling 
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Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R 
+ (K-1)[S/R + RTT - WS/R] 

K:= O/WS 



TCP Latency Modeling: Slow Start 

• Now suppose window grows according to slow start.  

• Will show that the latency of one object of size O is:  
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-  where Q is the number of times the server would stall  
   if the object were of infinite size. 
 

- and  K is the number of windows that cover the object. 



TCP Latency Modeling: Slow Start (cont.) 
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Example: 
 

O/S  = 15 segments 

 

K = 4 windows 

 

Q = 2 

 

P = min{K-1,Q} = 2 

 

Server stalls P=2 times. 

 

 

 

 



TCP Latency Modeling: Slow Start (cont.) 
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