Computer Science & Engineering

Data Communication and Computer
Networks

(MTCSE-101-A)

|—=

Flow Control

TCP Flow Control

-flow control receiver: explicitly informs
sender won't overrun sender of (dynamically
receiver's buffers by changing) amount of free

transmitting too much, buffer space
too fast — RcevWindow field in

TCP segment

RcvBuffer = size or TCP Receive Buffer sender: keeps the amount of

RcvWindow = amount of spare room in Buffer transmitted, unACKed data

evind less than most recently
F—Reviindow —4 received ReviWindow
7 7

/ / / _’application
/ process
////

b RevBuffer —————#

data from
1P

receiver buffering

[oN)

TCP Flow Control: How it Works

k— RevWindow —f

007
///

7
///
b RevBuffer ———#

data from

e spare room in buffer

= RcvWindow

application
process

source port #

dest port #

sequence number

acknowledgement number

head
len

nhot
T U

used

A

P

R

S

F

rcvr window size

checksum

ptr urgent data

Options (variable length)

application
data
(variable length)

TCP: setting
timeouts

Q:

TCP Round Trip Time and Timeout

how to set TCP
timeout value?
longer than RTT

— note: RTT will vary

too short: premature
timeout

— uhnecessary
retransmissions

too long: slow reaction to
segment loss

Q: how to estimate RTT?

SampleRTT: measured time from
segment transmission until ACK
receipt

— ignore retransmissions,
cumulatively ACKed segments

SampleRTT will vary, want
estimated RTT “smoother”

— use several recent measurements,
not just current SampleRTT

Probability

0.3

o
(V)

=
=

High-level Idea

— T 0.3 — T4 To
| |
| |
|

(\ |
|
|
L . 02
2
E
3]
o]
o
o

L ! 01
	I

| J | b | | | 0 | [1 1 L

0 10 20 30 40 50 0 10 20 30 40 50

Round-trip time (msec) Round-trip time (msec)

Set timeout = average + safe margin

Estimating Round Trip Time

1 SampleRTT: measured time from _
segment transmission until ACK]
1

r'eceip‘r j\ I\ I‘
7 SampleRTT will vary, want a gl x N |

"smoother” estimated RTT

use several recent
measurements, not
just current SampleRTT

EstimatedRTT = (1- o) *EstimatedRTT + oa*SampleRTT

7 Exponential weighted moving average
7 influence of past sample decreases exponentially fast
O typical value: o =0.125

Setting Timeout

Problem:
* using the average of SampleRTT will generate

many timeouts due to network variations
] freq.
Solution:
RTT

e EstimtedRTT plus “safety margin”
— large variation in EstimatedRTT -> larger safety margin

[
»

DevRTT = (1-B)*DevRTT + B*|SampleRTT-EstimatedRTT |

(typically, B = 0.25)

Then set timeout interval:

TimeoutInterval EstimatedRTT + 4*DevRTT

An Example TCP Session

RTT/RTO
(seconds)

TCF's calculated ETO

measured KTT

I|IIII|IIII|1III1IIII|IIII|IITr]
5 10 15 20 25 30 35

time (seconds)

TCP Round Trip Time and Timeout

EstimatedRTT = (l1l-x)*EstimatedRTT + x*SampleRTT

7 Exponential weighted moving average

7 influence of given sample decreases exponentially fast
7 typical value of x: 0.1

Setting the timeout

e EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin

Timeout = EstimatedRTT + 4*Deviation

Deviation = (l1-x)*Deviation +

x* | SampleRTT-EstimatedRTT |

Fast retransmit

Fast Retransmit

Timeout period often .
relatively long:

— long delay before resending
lost packet

Detect lost segments via
duplicate ACKs
— sender often sends many
segments back-to-back

— if segment is lost, there will
likely be many duplicate
ACKs

If sender receives 3 ACKs
for the same data, it
supposes that segment
after ACKed data was lost:

— resend segment before
timer expires

13

Triple Duplicate Ack

Packets

L[[[s |le]]7]
Acknowledgements (waiting seq#)

2] [3] 4]

14

Fast Retransmit:

event: ACK received, with ACK field value of y
If (y > SendBase) {

SendBase =y
iIf (there are currently not-yet-acknowledged segments)
start timer

}...

else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence number y

\

/
a duplicate ACK for \

already ACKed segment fast retransmit

15

Congestion Control

Principles of Congestion Control

Congestion:

* informally: “too many sources sending too much data too
fast for network to handle”

* manifestations:
— lost packets (buffer overflow at routers)
— long delays (queuing in router buffers)
* a highly important problem!

Causes/costs of congestion: scenario 1

Host B

=

Host A o
T?\,n original data TAOUT
A~
()
p—_——
router with

infinite buffers

£

two senders, two receivers

one router,
infinite buffers

no retransmission

Causes/costs of congestion: scenario 1

Cl2+

7\'ou’r
delay

C/2 C/2
7\'in 7\‘in

 Throughput increases with load
* Maximum total load C (Each session C/2)
* Large delays when congested

— The load is stochastic

Causes/costs of congestion: scenario 2

* one router, finite buffers
* sender retransmission of lost packet

Host A 2. original dat
: i orginal data ?\«ou’r
?\'in’ = original +
Host B retrans.
® @
\ ‘/\'
N
router with

finite buffers

Causes/costs of congestion: scenario 2

always: }Lin: K&%?odput)

— Like to maximize goodput!

“perfect” retransmission:

— retransmit only when loss: Kin> 7\“out

Actual retransmission of delayed (not lost) packet

makes Xilr?rger (than perfect case) for same Kout

Causes/costs of congestion: scenario 2

7\‘0Ut
}\‘OU'[
7\"OU'[

A'in = A A i

"costs” of congestion:
7 more work (retrans) for given "goodput”

7 unneeded retransmissions: link carries (and delivers)
multiple copies of pkt

Causes/costs of congestion: scenario 3

 four senders

* multihop paths

* timeout/retransmit
Host A

Host D
A9

Q: what happens as kl

and k’nincrease ?

Host B

Host C

Causes/costs of congestion: scenario 3

Host A fost8

C/2 E

3

('< -"_) k] R2 Host C
§R4 s (D E

(VJIIIIIII —
A
1

Another "cost” of congestion:

7 when packet dropped, any "upstream” transmission
capacity used for that packet was wasted!

)

p—
—

(

Approaches towards congestion control
Two broad approaches towards congestion control:

End-end congestion control: Network-assisted congestion

* no explicit feedback from control:

network e routers provide feedback to
e congestion inferred from end- end systems

system observed loss, delay — single bit indicating
* approach taken by TCP congestion (SNA, DECbit,

TCP/IP ECN, ATM)

— explicit rate sender should
send at

Goals of congestion control

* Throughput:

— Maximize goodput

— the total number of bits end-end
* Fairness:

— Give different sessions “equal” share.
— Max-min fairness

* Maximize the minimum rate session.
— Single link:

* Capacity R

* sessions m

Max-min fairness

Model: Graph G(V,e) and sessions s, ... s
For each session s, a rate r. is selected.

The rates are a Max-Min fair allocation:
— The allocation is maximal
* No r, can be simply increased

— Increasing allocation r; requires reducing
* Some session j

* <

Maximize minimum rate session.

Max-min fairness: Algorithm

* Model: Graph G(V,e) and sessions s, ... s
e Algorithmic view:

— For each link compute its fair share f(e).
» Capacity / # session

— select minimal fair share link.

— Each session passing on it, allocate f(e).

— Subtract the capacities and delete sessions
— continue recessively.

e Fluid view.

Max-min fairness

* Example

CRCETTTTRTR

Case study: ATM ABR congestion control

ABR: available bit rate:
* “elastic service”
e if sender’s path “underloaded”:
— sender can use available bandwidth
* if sender’s path congested:
— sender lowers rate
— a minimum guaranteed rate
* Aim:
— coordinate increase/decrease rate
— avoid loss!

Case study: ATM ABR congestion control

RM (resource management) cells:
* sent by sender, in between data cells

— one out of every 32 cells.
* RM cells returned to sender by receiver
* Each router modifies the RM cell
* Infoin RM cell set by switches

— “network-assisted”

e 2 bitinfo.

— NI bit: no increase in rate (mild congestion)
— Cl bit: congestion indication (lower rate)

Case study: ATM ABR congestion control

I RM cells
source I:l data cells destination

Switch Switch

S J0ON

* two-byte ER (explicit rate) field in RM cell

— congested switch may lower ER value in cell

— sender’ send rate thus minimum supportable rate on path

 EFCI bit in data cells: set to 1 in congested switch

— if data cell preceding RM cell has EFCI set, sender sets Cl bit in
returned RM cell

Case study: ATM ABR congestion control

* How does the router selects its action:
— selects arate
— Set congestion bits
— Vendor dependent functionality

* Advantages:
— fast response
— accurate response
* Disadvantages:
— network level design

— Increase router tasks (load).
— Interoperability issues.

End to end
control

End to end feedback

e Abstraction:

L—l—l—l

— Alarm flag.
— observable at the end stations

Simple Abstraction

Simple Abstraction

o

L

Simple feedback model

* Every RTT receive feedback

— High Congestion m

Decrease rate

— Low congestion
Increase rate

* Variable rate controls the sending rate.

Multiplicative Update

e Congestion: m
— Rate = Rate/2

* No Congestion:
— Rate= Rate *2

* Performance
— Fast response
— Un-fair:
Ratios unchanged

Additive Update

Congestion:
— Rate = Rate -1

No Congestion:
— Rate= Rate +1

Performance

— Slow response

Fairness:
— Divides spare BW equally
— Difference remains unchanged

AIMD Scheme

 Additive Increase

— Fairness: ratios improves

 Multiplicative Decrease

— Fairness: ratio unchanged

overflow

— Fast response

* Performance:
— Congestion -
Fast response
— Fairness

AIMD: Two users, One link

Falrness

BW limit

TCP Congestion Control

7 Closed-loop, end-to-end, window-based congestion
control

7 Designed by Van Jacobson in late 1980s, based on
the AIMD alg. of Dah-Ming Chu and Raj Jain

7 Works well so far: the bandwidth of the Internet
has increased by more than 200,000 times

7 Many versions
O TCP/Tahoe: this is a less optimized version

O TCP/Reno: many OSs today implement Reno type
congestion control

O TCP/Vegas: not currently used

For more details: see TCP/IP illustrated: or read

http://Ixr.linux.no/source/net/ipv4/tcp_input.c for linux implementation 43

TCP/Reno Congestion Detection

7 Detect congestion
in Two cases and
react differently:

O 3 dup ACKs
O timeout event

— Philosophy:

* 3 dup ACKs indicates
network capable of

delivering some segments

* fimeout is "more
alarming”

Basic Structure

7 Two "phases”
oslow-start: MI
O congestion avoidance: ATMD

7 Important variables:
Ocwnd: congestion window size

Ossthresh: threshold between the slow-
start phase and the congestion avoidance
phase

Visualization of the Two Phases

) —
18 —

P

16 — ssthresh
14 —

12 —
i B
(segments)

0 1 2 3 4 3 & 7

round-trip times

Slow Start: MI

7 What is the goal?
O getting to equilibrium gradually but quickly

7 Implements the MI algorithm

O double ecwnd every RTT until network congested
- get a rough estimate of the optimal of cwnd

Slow-start

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);

For each newly ACKed segment:
if (cwnd < ssthresh)
/* slow start™/
cwnd = cwnd + 1;

cwnd =1

cwnd =2

cwnd =4

cwnd =6

cwnd =8

segment 1

segment 2

ACK for segment 1

[

segment 3

nts 2+ 3

segment 4

ACK for segme

segment 5

segment 6

segment 7

—

See [Jac89]

Startup Behavior with Slow-start

Packet Sequence Number (KE)

160

140

A
=]

Send Time (sec)

TCP/Reno Congestion Avoidance

* Maintains equilibrium and reacts around
equilibrium

* Implements the AIMD algorithm

— increases window by 1 per round-trip time
(how?)
— cuts window size
 to half when detecting congestion by 3DUP

e to 1if timeout
* if already timeout, doubles timeout

50

TCP/Reno Congestion Avoidance

Initially:
cwnd = 1;
ssthresh = infinite (e.g., 64K);
For each newly ACKed segment:
if (cwnd < ssthresh)
/* slow start™/
cwnd = cwnd + 1;
else

/* congestion avoidance; cwnd increases (approx.)
by I'per RTT */
cwnd += 1/cwnd;
Triple-duplicate ACKs:
/* multiplicative decrease */

cwnd = ssthresh = cwnd/2;

Timeout:
ssthresh = cwnd/2;
cwnd = 1;

(if already timed out, double timeout value; this is called exponential backoff)

o1

TCP/Reno: Big Picture

cwnd

D D D

/‘ TO
ssthresh _

/ ssthresh ssthresh /
/ """"""""""""""""""""""""""" ssthresh)

> Time
slow congestion congestion congestion slow congestion
start avoidance avoidance avoidance start avoidance

TD: Triple duplicate acknowledgements
TO: Timeout

A Session

36
34 &Y
32 [32
30 // [30
25 { 28
26 { 26
24 - o . 24
sequence 22 1 22
number) -0
i 13 13
crenred 6 - 16
(100 bytes) 14 - /t‘/vj\ 14
12 12
10 - L 10

B - L&

6 Ls

4 sequence number : 4

2 2

“ I 1 T T T | 1] | L L B r T L] L] 1 'I 1 L L] T '] 1 1 1 I I I 1 1 ! I] “

0 5 10 15 0 25 30 5

servd e (seconds)

Question: when cwnd is cut to half, why sending rate Is not?

93 53

TCP/Reno Queueing Dynamics

7 Consider congestion avoidance only

cwnd?

filling buffer
/ bottleneck

bandwidth

draining buffer

> Time
congestion
avoidance

There is a filling and draining of buffer process
for each TCP flow.

TCP Tahoe Congestion Avoidance

-Congestion avoidance

/[* slowstart is over */ 13

[* Congwin > threshold */

Until (timeout) { /* loss event */
every ACK:

threshol d

Congwin += 1/Congwin

}
threshold = Congwin/2

CongWIn:1 L 1 1 1 1 1 |

Congestion window (in segments)

[T P T N T o RS B ' T

I O Y
perform S|Qwstart 012 34 56 7 8 91011121314

HMumber of transmissions

TCP Taheo

TCP Reno

* Fast retransmit:
— After receiving 3 duplicate ACK

— Resend first packet in window.
* Try to avoid waiting for timeout

* Fast recovery:

— After retransmission do not enter slowstart.

— Threshold = Congwin/?2

— Congwin = 3 + Congwin/2

— Each duplicate ACK received Congwin++
— After new ACK

 Congwin = Threshold
* return to congestion avoidance

. TCP Congestion Window Trace

60

50

40

30

Congestion Window

20

10

o - = ~threshold
_ —— congestion
tIMeoulS=— window
/

/ fast retransmis;ﬁ

/ ----- — / /

L\ [~

| |
/ / \ additive increase /

/ / \slow start period /

I I I I I

0 10 20 30 40 50

Time

60

TCP Vegas:

e |dea: track the RTT

— Try to avoid packet loss
— |latency increases: lower rate

— latency very low: increase rate

* Implementation:
— sample RTT: current RTT
— Base RTT: min. over sample RTT
— Expected = Congwin / Base RTT
— Actual = number of packets sent / sample RTT
— A =Expected - Actual

TCP Vegas

* A =Expected - Actual

* Congestion Avoidance:
— two parameters: a and 3, a<f3
— If (A < o) Congwin = Congwin +1
— If (A >) Congwin = Congwin -1
— Otherwise no change
— Note: Once per RTT

 Slowstart

— parametervy
— If (A >y) then move to congestion avoidance

TCP Dynamics: Rate

 TCP Reno with NO Fast Retransmit or Recovery
* Sending rate: Congwin*MSS /RTT
* Assume fixed RTT

7 Actual Sending rate:
O between W*MSS / RTT and (1/2) W*MSS / RTT
O Average (3/4) W*MSS / RTT

TCP Dynamics: Loss

* Loss rate (TCP Reno)

— No Fast Retransmit or Recovery

7 Total packet sent:
O about (3/8) W2 MSS/RTT = O(W?)
O One packet loss

7 Loss Probability: p=O(1/W?2) or W=0(1/p) -

TCP latency modeling

Q: How long does it take to Notation, assumptions:
receive an object from a Web

server after sending a
request?

e TCP connection establishment

Assume one link between
client and server of rate R

* Assume: fixed congestion
window, W segments

e S: MSS (bits)
* O: object size (bits)
* no retransmissions

e data transfer delay

— no loss, no corruption

TCP latency modeling

Optimal Setting: Time = O/R

Two cases to consider:
7 WS/R>RTT + S/R:

O ACK for first segment in window returns
before window's worth of data sent

7 WS/R<RTT + S/R:

o wait for ACK after sending window's worth of
data sent

TCP latency Modeling.. 5,5

iritiate TCP
commection W e ., initiate TCF
et contection R
e b e
I RTT T
J—l‘"-'“_m‘“-” “'N_H”';.'lﬂ
reguest it s
Foe — I ETT
request
iR object
SR
BTT WS Walk.
ETT
| st ack
tetaris
lstack
returns
A tirme i
T time
x at client ¥
. at server
hme ¥ v time
at cliant at setrer

Case 1: latency = 2RTT + O/R Case 2: latency = 2RTT + O/R /
+ (K-1)[S/R +RTT - WS/R]

TCP Latency Modeling: Slow Start

 Now suppose window grows according to slow start.
* Will show that the latency of one object of size O is:

Latency = 2RTT +%+ P[RTT +%}— (2° —1)%

where Pis the number of times TCP stalls at server:

P =min{Q,K -1}

- where Q is the number of times the server would stall
if the object were of infinite size.

-and K is the number of windows that cover the object.

TCP Latency Modeling: Slow Start (cont.)

initiate TCP
connection

Example: .

request_»
O/S =15 segments object o
¢ first window
=S/R

K =4 windows

second window
= 2S/R

Q=2

P=min{K-1,Q} =2

third window
= 4S/R

v

Server stalls P=2 times.

fourth window
=8S/R

v

\ complete

transmission

object
delivered

time at
time at server
client

TCP Latency Modeling: Slow Start (cont.)

S

until server receives acknowledgement

R + RTT = time from when server startstosend segment

initiate TCP
connection

—

2"‘1% = time to transmit the kK™ window request

object

{% +RTT —2¢1 %} = stall time after the k™ window

P
latency = % +2RTT +) stallTime,

RTT
v

—

¢ first window
=S/R

second window
=2S/R

third window
=4S/R

fourth window
=8S/R

v
\ complete

transmission

time at

p=1
P
_9Q oRrTTS Z[§ +RTT —2¢1]
R k=1 R R object
delivered
_9 oRTT +P[RTT +§]—(2P —1)§ v
R R R client

server

